Способы прогрева бетона

Особенности прогрева с помощью сварочного аппарата

Технология предусматривает сквозное или периферийное расположение нагревательных элементов. Первый вариант подходит для конструкций сложной формы с большой толщиной заливаемой смеси. В обоих случаях строители рекомендуют постоянно контролировать текущие температурные показатели, чтобы не допустить перегрева.

При использовании сварочного аппарата для нагрева плиты нужно учитывать следующие особенности:

  1. Рабочие параметры оборудования и время воздействия определяются индивидуально с учетом температуры воздуха на строительной площадке.
  2. Чтобы сохранить влагу в цементной смеси, поверхность засыпают слоем опилок. Процесс испарения регулируют, изменяя силу тока, вырабатываемого сварочником.
  3. Недопустим перегрев конструкции. Он сопровождается обезвоживанием бетона, его структура становится пористой, теряется прочность.
  4. Для увеличения КПД установки поверхность накрывают слоем теплоизоляции.
  5. Схема, по которой к источнику питания подключают токопроводящие элементы, разрабатывается индивидуально с учетом параметров конструкции.

Один сварочный аппарат способен прогреть до 100 м³ смеси при температуре воздуха до -40 °С.

Подготовка к самостоятельным работам

Чтобы обеспечить надежный контакт нагревательных элементов с бетоном и равномерный нагрев, его нужно качественно уплотнить, удалив воздух. Вскипание раствора и выгорание стали возможны, если в приэлектродной зоне плотность тока возрастет до критических показателей. Происходит локальный перегрев, избыточное испарение влаги, гидратация замедляется. Итоговая марочная прочность ЖБИ снижается.

Перед заливкой мастера рекомендуют контролировать размещение нагревательных элементов относительно арматуры, чтобы не допустить короткого замыкания, выхода из строя трансформатора, кабеля.

Включают электронагревательное оборудование после полного завершения процесса укладки бетонной смеси и размещения греющих элементов, подключения их выводов, выполнения всех требований техники безопасности. Мастера рекомендуют сделать скважины в плите для контрольных замеров температурных показателей.

Необходимые инструменты


Инструменты для нагрева бетона.

Максимально допустимое время задержки до включения подогрева после заливки смеси — 1,5‑2 часа, если температура воздуха превышает +5 °С. Энергозатраты зависят от внешних условий, объема залитого бетона. Перечень оборудования определяется видом используемых нагревательных элементов. В него также входят:

  • трансформаторный сварочный прибор 200 А;
  • инвертор;
  • кабель АВВГ;
  • изоляционная хлопчатобумажная лента;
  • электроинструмент для определения текущих показателей силы тока.

Мастера рекомендуют выбирать аппарат, в комплектацию которого входит генератор, модуль снижения рабочего напряжения, блоки для сушки электродов и подогрева почвы при ее промерзании. Вспомогательные функции выполняет блок, предназначенный для снижения уровня напряжения холостого хода. Он защищает сварщика от обрыва дуги отключением электропитания.

Какова продолжительность прогрева бетона

Бетон прогревается до тех пор, пока не достигнет критической прочности (30—50% от проектной). Обычно это происходит на 4—6-й день.

Прочность бетона определяют по фактическому температурному режиму при помощи графиков.

Для более точного определения сроков используют лабораторные исследования, для которых изготавливают отливки-образцы и позволяют им набирать прочность в таких же условиях, как и основная конструкция.

Применение противоморозных добавок при зимних бетонных работах гарантирует получение качественных бетонных конструкций даже в условиях отрицательных температур. Совмещение применения противоморозных добавок с методом термоса или прогревом бетона не только гарантирует набор прочности, но и сокращает продолжительность термообработки, а значит, позволяет сэкономить электроэнергию и повысить оборачиваемость дорогостоящего оборудования и опалубки. Грамотное применение прогревающих мероприятий и противоморозных добавок в соответствии с технологической картой позволяет получать зимний бетон высокого качества.

Особенности применения противоморозных добавок

В условиях российского климата на строительных площадках для работы зимой применяют противоморозные добавки в бетон. Их использование позволяет понизить температуру замерзания жидкости и ускорить процесс отвердения смеси.

Высоко востребованными в холодное время становятся и добавки-пластификаторы, меняющие качественные характеристики бетона. Он сохраняет подвижность и пластичность, несмотря на существенное снижение температуры.

Допустимое количество противоморозных добавок не должно превышать 6% от общего объема цемента. На этикетке присадки производитель указывает, до какой температуры она эффективна.

Противоморозные добавки используют самостоятельно или в сочетании с разными технологиями прогрева бетона. На рынке можно найти не одну сотню различных средств, позволяющих работать с цементным составом при минусовых температурах.

Подобные компоненты включают в состав бетона в процессе ее замешивания. Только так можно добиться равномерного распределения реактивов по раствору.

В строительстве обычно применяют:

  • нитрит натрия;
  • нитрит кальция;
  • хлористый натрий;
  • карбонат натрия;
  • поташ;
  • формиат натрия.

Продукты на их основе предлагают многие отечественные и зарубежные производители строительных материалов. Лучше выбирать продукцию известных марок с хорошей репутацией.

Использовать противоморозные добавки очень просто. Они недорогие, но имеют недостатки. Их включение в смесь увеличивает время обретения бетоном прочности и может снижать коррозийную стойкость арматурных элементов, если в составе добавки содержатся хлориды.

Строительные работы с монолитными конструкциями в зимнее время – ответственный и серьезный процесс, требующий профессионального подхода. Схему прогрева бетона выбирают в зависимости от применяемого метода. От специалиста требуется не только корректно оценить эффективность выбранной им методики, но и не ошибиться при расчете суммарного объема затрат. Любая допущенная ошибка может иметь фатальные последствия. Технологические процессы в строительстве нельзя нарушать даже минимально. От их соблюдения зависит прочность, долговечность возведенного здания и безопасность его эксплуатации.

Технические характеристики

Характеристики греющего провода значительно отличаются от параметров обычных проводников, так как к нему предъявляются совсем другие требования. В этом виде проводов наиболее важными являются не свойства изоляции и токопроводящей жилы, а величина теплоотдачи и температурные свойства.

Технический показатель изделия

Если рассматривать температурные параметры, то для провода ПНСВ обычно указывают допускаемую наибольшую температуру, величина которой 80 °С. При более высокой изоляция начинает разрушаться.

Обратите внимание! Эксплуатационная температура для этой марки проводника находится в интервале −60 °С — 50 °С

Другой важной характеристикой является монтажная температура. Работа провода разрешается при морозах до −60 °С, но его укладка не должна производиться, если на улице ниже −15 °С. Работа провода разрешается при морозах до −60 °С, но его укладка не должна производиться, если на улице ниже −15 °С

Работа провода разрешается при морозах до −60 °С, но его укладка не должна производиться, если на улице ниже −15 °С

Другой важной характеристикой является монтажная температура. Работа провода разрешается при морозах до −60 °С, но его укладка не должна производиться, если на улице ниже −15 °С. Не менее важным параметром является удельная мощность выделения тепла

У проводников, предназначенных для передачи электричества, эта характеристика очень низкая. Для греющего провода производители указывают мощность выделения тепла около 20 Вт/м. Иногда изготовители заявляют этот параметр с величиной до 40 Вт/м, но здесь играет большую роль расчетная температура, а также наличие армирования поверхности, что значительно повышает этот параметр

Не менее важным параметром является удельная мощность выделения тепла. У проводников, предназначенных для передачи электричества, эта характеристика очень низкая. Для греющего провода производители указывают мощность выделения тепла около 20 Вт/м. Иногда изготовители заявляют этот параметр с величиной до 40 Вт/м, но здесь играет большую роль расчетная температура, а также наличие армирования поверхности, что значительно повышает этот параметр.

Следующим параметром греющего провода является его удельное сопротивление, которое прямо зависит от сечения токоведущей жилы. Например, расчет нагревательного провода марки ПНСВ с сечением 1,2 мм² обладает удельным сопротивлением 0,12 Ом/м, а провод 2 мм² — 0,044 Ом/м.

Вам это будет интересно Описание сетевого кабеля

Если учесть, что этот вид проводника укладывается в бетонном растворе, то важным его свойством является устойчивость к проникновению воды, а также соляной и кислотной среды, что особенно важно для растворов, которые заливают при отрицательных температурах. Важно! В такой бетон обычно добавляют разные присадки для достижения необходимой вязкости. Важно! В такой бетон обычно добавляют разные присадки для достижения необходимой вязкости

Важно! В такой бетон обычно добавляют разные присадки для достижения необходимой вязкости

Как действует прогрев электродами

Принцип действия прогрева электродами основывается на прохождении электрического тока через бетонную основу.

В момент подачи напряжения между электродами создается электрическое поле, которое и нагревает бетон. Иными словами, электрическая энергия переводится в тепловую. При регулировании напряжения можно создать необходимую температуру нагрева.

Имеется четыре варианта электродов, применяемых при обогреве:

  • пластинчатые,
  • полосовые,
  • струнные,
  • стержневые.

Пластинчатый электрод представляет собой пластину, которая монтируется на внутреннюю часть опалубки, с противоположной стороны заливки. Пластинчатые электроды монтируются парами.

Электрод образует электрическое поле, и бетонный раствор прогревается до нужных температур и находится теплым продолжительный период.

Полосовой электрод представляют собой кусок железной полосы шириной в 40-45 сантиметров, и размещается поверх залитого бетона.

В момент подключения тока в бетонном слое образуется электрическое поле. Данный вид прогрева используется при заливке конструкций небольшой толщины.

Струнный электрод применяется при нагреве конструкций в виде цилиндра. В середину конструкции размещается электрод и опалубка обвивается листом, проводящим ток. Стержень располагается вдоль оси опалубки.

Чтобы присоединять провода было удобнее, торчащие края сгибаются в виде буквы «Г». Иногда в качестве электродов используются стержни каркаса из металла, вмонтированного в опалубку.

Однако в данном случае возрастает электропотребление, поэтому данный способ применяется гораздо реже.

Стержневой электрод представляет собой арматурный прут в 7-11 мм, который помещают в бетонную основу через определенный расчетный шаг. Последние электроды размещаются в 4 сантиметрах от опалубки съемной или другого типа.

Такой электрод позволяет прогреть бетонный раствор, залитый в любую форму, поэтому нередко применяется в необычных и сложных постройках. Чтобы обеспечить лучшее прохождение в бетон, конец стержня заостряют.

Стержень располагают перпендикулярно, чтобы он не соприкасался с армирующими стержнями каркаса.

Электропрогрев бетона проводом ПНСВ

Заливка раствора в подготовленную для прогрева форму

После проведения и утверждения всех расчетов и схем приступают к прогреву. Технология следующая:

Нагревательный элемент равномерно раскладывается в месте заливки

Важно, чтобы части кабеля не соприкасались друг с другом. Нагревательный объект не должен выходить за границы конструкции и взаимодействовать с опалубкой.
Прежде чем выводить концы кабеля за границы обогрева, холодные концы надежно соединяют с нагревательными выходами методом пайки

Для максимальной защиты места пайки дополнительно оборачивают металлической фольгой.
Проводится тест-проверка с использованием мегаомметра и измерение размеренной нагрузки тока по фазам.
Если система работоспособная и нареканий в реализации проекта нет, конструкцию заливают бетонным раствором.
Через понижающую трансформаторную подстанцию подается ток.

Это самый простой способ, позволяющий эффективно без нарушения особенностей эксплуатации прогреть бетон проводом.

Установка провода

Схема укладки провода

Провод прокладывается внутри опалубки еще до начала заливки полостей бетоном. Как правило, его фиксируют мягкой алюминиевой проволокой к арматуре, но по правилам техники безопасности такой подход в реализации не приветствуется. Минимальный радиус закругления не менее 25 см, обусловлено это большой жесткостью стальной жилы. Это правило особенно актуально при понижении температуры окружающей среды, невзирая на то что виниловая изоляция сохраняет свои физические свойства при температуре до -30 градусов. При -10 градусах крутой изгиб может стать причиной нарушения целостности изоляционного слоя.

Для равномерного прогревания провода прокладывают параллельно друг другу с интервалом не более 15 см. Для 5 м.куб. бетона требуется около 30 м кабеля вида ПНСВ 1,2.

При напряжении в 220В требуется около 17 метров кабеля, а при 380В минимум 31 метр. При таком подходе вся система будет прогреваться равномерно. Если же будет проложена секция большей длины, выделение тепла будет происходить не дальше 5-6 метров от места подключения к питающей сети.

Преимущества и недостатки

Таким способом прогревать монолитные бетонные конструкции выгодно за счет экономного энергопотребления и низкой стоимости кабелей. Отдельного внимания заслуживает устойчивость проволоки к химическому воздействию (кислотному и щелочному), что позволяет их применять при добавлении в строительную смесь разных присадок.

Несмотря на весомые достоинства, есть и недостатки:

  • необходимость в использовании специального оборудования – ПТ;
  • сложность в проведении расчетов требуемой длины кабеля.

Стоимость специального оборудования – понижающих станций – высока. Процесс использования недолгий, а стоимость аренды, как правило, составляет около 10% себестоимости агрегата. Применение сварочных аппаратов представляется возможным при обогреве небольших сооружений.

Технология прогрева и схема укладки

Перед установкой системы прогрева бетона в зимнее время монтируется опалубка и арматура. После этого раскладывается ПНСВ с интервалом между проводами от 8 до 20 см, в зависимости от наружной температуры, ветра и влажности. Провод не натягивается и прикрепляется к арматуре специальными зажимами. Нельзя допускать изгибов радиусом менее 25 см и перехлестов токоведущих жил. Минимальное расстояние между ними должно составлять 1,5 см, это поможет не допустить короткого замыкания.

Наиболее популярная схема укладки ПНСВ – «змейка», напоминающая систему «теплый пол». Она обеспечивает обогрев максимального объема бетонного массива при экономии греющего кабеля. Перед заливкой в опалубку раствора необходимо убедиться в том, что в ней нет льда, температура смеси не ниже +5°C, а монтаж схемы подключения проведен правильно, на достаточную длину выведены холодные концы.

К проводу ПНСВ прикладывается инструкция, с которой нужно ознакомиться перед тем, как прогреть бетон. Подключение осуществляется через секции шинопроводов двумя способами через схему «треугольник» или «звезда». В первом случае систему разделяют на три параллельных участка, подключаемых к выводам трехфазного понижающего трансформатора. Во втором – три одинаковых провода соединяются в один узел, потом три свободных контакта аналогично подключаются к трансформатору. Питающее устройство устанавливается не далее, чем в 25 м от места подключения, прогреваемый участок обносится ограждением.

Система подключается после полной заливки всего объема строительного раствора. Технология прогрева бетона греющим кабелем ПНСВ включает в себя несколько этапов:

  1. Разогрев осуществляется со скоростью не более 10°C в час, что обеспечивает равномерное прогревание всего объема.
  2. Нагрев при постоянной температуре длится до тех пор, пока бетон не наберет половину технологической прочности. Температура не должна превышать 80°C, оптимальный показатель 60°C.
  3. Остывание бетона должно происходить со скоростью 5°C в час, это поможет избежать растрескивания массива и обеспечит его монолитность.

При соблюдении технологических требований материал наберет марку прочности, соответствующую его составу. По окончанию работ ПНСВ остается в толще бетона и служит дополнительным армирующим элементом.

Нужно отметить, что применять кабель КДБС или ВЕТ значительно проще, поскольку их можно подключать напрямую к сети 220 В через щитовую или розетку. Они разделены на секции, что помогает избежать перегрузки. Но эти кабели стоят дороже ПНСВ, поэтому реже применяется при строительстве крупных объектов.

Еще одна популярная технология – использование опалубки с ТЭН и электродами, когда арматура вставляется в раствор и подключается к сети, используя сварочный аппарат или понижающий трансформатор другого типа. Этот способ прогрева не требует специального греющего кабеля, но более энергозатратен, поскольку вода в бетоне играет роль проводника, а его сопротивление при затвердевании значительно возрастает.

Виды прогрева

Сквозной (внутренний, погружной)

Применяется для конструкций, имеющих большую толщину или сложную форму. Из названия понятно, что электроды размещаются внутри залитой массы раствора. Общее правило – электроды устанавливаются на расстоянии не менее 3 см от элемента опалубки.

Периферийный (поверхностный, нашивной)

Под полосы устанавливается подкладка. На практике для этого чаще всего берутся куски рубероида, что позволяет такие электроды легко снимать и использовать многократно.

Общее правило

Если в опалубку установлен металлический каркас, то использовать напряжение более 127 В ЗАПРЕЩЕНО. Для конструкций неармированных оно может быть не более 380 В.

Что учесть при прогреве бетона

  • По мере отвердевания залитой массы изменяется ее эл/сопротивление, так как происходит испарение влаги. Следовательно, необходимо систематически корректировать силу подаваемого тока, поэтому в схему обязательно должен быть включен элемент регулировки (например, реостат, трансформатор с несколькими выходами).
  • Поверхность конструкции, подлежащей прогреву, должна быть укрыта материалами, снижающими теплопотери. Это могут быть опилки, маты, пленка п/э, рубероид и тому подобное. В противном случае сам процесс прогрева теряет смысл.
  • При стержневом методе нужно соблюдать одинаковые расстояния между электродами как в одном ряду, так и в соседних. Это обеспечит равномерность загрузки «линий» и исключит перекос фаз.
  • Снижения энергозатрат можно добиться введением в состав раствора специальных добавок-пластификаторов, ускоряющих процесс отвердевания бетона.
  • Специалисты не рекомендуют применять электродный прогрев для мелких конструкций. Для этого существуют другие методики.
  • В качестве «питания» нельзя использовать источник постоянного тока, так как в этом случае не избежать электролиза жидкости.
  • При небольших объемах заливки в качестве источника напряжения можно использовать сварочные трансформаторы.
  • Единой рекомендации по размещению электродов на (в) заливке раствора нет. Схема определяется индивидуально и зависит от внешних условий, параметров опалубки, марки цемента и ряда других факторов.
  • Через определенные временные промежутки (зависят от специфики работ) делается замер температуры. Для этого проделываются специальные «шурфы».
  • ЗАПРЕЩАЕТСЯ. При использовании прутьев арматурного каркаса в качестве электродов работать с напряжением свыше 60 В. В исключительных случаях (более этого номинала) – только при соблюдении дополнительных мер и локально (на отдельных сегментах конструкции).

Для получения из раствора качественного искусственного камня рекомендуется комплексный обогрев массы, сочетающий несколько методик, в том числе, и «пассивную» («термос»).

Прогревание бетона при помощи электродов делается в зимнее время или на территории с минусовой температурой воздуха.

Данный процесс осуществляется для того, чтобы водный раствор, входящий в состав бетона, не замерзал при холоде и не превращался в лед. Только в жидком состоянии вода может вступить в химическую реакцию с цементным раствором.

Плюс, во время замерзания воды в бетоне нарушаются все связи, и они просто начинает трескаться, соответственно говорить о прочности конструкции не имеет уже смысла.

Способы прогрева конструкций из бетона

Обогревают бетон при работе на холоде различными методами. Строители часто применяют следующие технологии.

Трансформатором

Для прогрева бетона зимой многие строители применяют трансформатор. Тепло при использовании этой технологии вырабатывает электрический ток. С трансформатором применяют электроды либо провода. Первые вставляют в предварительно замоноличенную конструкцию или размещают на ее поверхности, а вторые крепят к арматуре либо погружают в опалубку, затем заливают раствор. Электроды и кабели подключают к электрической сети с напряжением 220 В или 380 В через трансформатор понижающего типа. Обычно используют трехфазное оборудование. Все фазы нагружать нужно одновременно.

Напрямую подключать греющие элементы к сети нельзя. Это приведет к локальному перегреву и может быть опасно для жизни.

Электропрогрев бетона проводом – универсальный способ. Он может применяться для стен, фундамента, колонн или перекрытий. Использовать для электропрогрева бетона по этой технологии допускается следующие типы кабелей:

  • ПНСВ (нагревательный с жилой из стали и виниловой изоляцией);
  • ВЕТ (предназначенный для работы напрямую от электрической сети);
  • ПТПЖ (токопроводящий с параллельными оцинкованными жилами).

Жилы проводов могут быть диаметром 1,2-3 мм.

Если обогрев бетона трансформатором производят при помощи электродов, подойдут следующие их типы:

  • полосовые;
  • струнные;
  • стержневые;
  • пластинчатые.

Инфракрасным излучением

Еще один эффективный метод прогрева бетона в зимнее время предполагает применение инфракрасного излучения, преобразующегося в тепловую энергию.

Рядом с залитой цементным раствором опалубкой ставят промышленные инфракрасные обогреватели и направляют их в сторону опалубки. Функцию источника излучения выполняют ТЭНы мощностью до нескольких сотен киловатт.

Инфракрасный аппарат имеет следующие компоненты:

  • излучатель;
  • отражатель;
  • подвес либо держатель.

Необходимый показатель мощности оборудования необходимо подбирать таким образом, что температура на поверхности была не выше 93 °C. Методика не подходит, если толщина бетона составляет более 70 см.

Электрический инфракрасный способ нагрева строительной смеси имеет высокий КПД и небольшие энергетические затраты.

Прогрев бетона своими силами

Некоторые несложные методики могут применяться в частном строительстве, а оборудование для прогрева легко изготовить своими руками.

Методом магнитной индукции

Греть способом магнитной индукции можно только армированные конструкции. Металлические элементы в этом случае оказываются незаменимыми, поскольку выполняют функцию сердечника.  Вокруг залитой бетоном конструкции петлями помещают кабель в изоляции. Он будет играть функцию индуктора. Какой провод использовать, и сколько его потребуется, определяют посредством расчетов. Затем по кабелю пускают переменный ток. Образующееся в результате описанных манипуляций магнитное поле нагревает арматуру железобетонной конструкции, от которой тепло расходится по всему бетонному составу. И зима больше не является препятствием для продолжения строительных работ.

Нагревание производится снаружи. Преимущества индукционного нагрева методом индукции заключаются в низкой цене и равномерности прогрева. Недостаток состоит в том, что применять его можно только на небольшом перечне конструкций – на балках, колоннах, и пр.

Греющей опалубкой

В ряде случаев для бетонирования в холодное время применяют греющую опалубку. Ее можно использовать и летом для сокращения скорости застывания раствора. Стандартные составляющие такой опалубки дополняют нагревательными элементами. Схема подобной модификации достаточно проста. Сделать греющей можно как деревянную, так и металлическую опалубку.

В качестве нагревательных элементов допускается применять не только провода и кабели, но и трубчатые, ленточные электронагреватели, токопроводящие пленки. Метраж нагревательных элементов рассчитывается индивидуально. Использование греющей опалубки обеспечивает равномерный прогрев, а монтаж конструкции занимает минимум времени.

Тепляком

Один из наиболее старых проверенных методов обогрева бетонного раствора предполагает использование тепляков (либо шатров). Технология заключается в создании вокруг заливаемой составом конструкции теплоизолированного пространства. Последнее затем прогревается до необходимой температуры при помощи тепловых пушек либо обогревателей. Тепляк допускается изготавливать из брезента, древесины или полимерных материалов с подходящими характеристиками. Укрыву подлежит только отдельная часть всей конструкции – которая заливается. Затем шатер перемещают.

Как влияет температура окружающей среды на состояние бетона

При создании монолитных сооружений набор прочности сильно зависит от климатических условий. Ключевые факторы, влияющие на затвердевание бетона – влажность и температура. Сильное понижение первой приводит к усиленному испарению влаги и обезвоживанию материала. Вследствие этого возникают усадочные трещины, замедляется набор прочности.

При анализе ситуации, когда можно ли заливать бетон, необходимо учитывать влияние температурного режима на процессы, происходящие в бетоне. Основной химической реакцией во время заливки является гидратация цемента водой. Активность воды сильно зависит от степени ее нагретости. В жаркую погоду твердение смеси происходит при быстрой потере влаги и неравномерном прогреве слоев. Это плохо отражается на состоянии поверхности – она трескается. При умеренных климатических условиях проведение бетонных работ дает наилучшие результаты. Скорость протекания гидратации обеспечивает оптимальный режим затвердевания.

При работе в холодное время нужно учитывать последствия кристаллизации воды в растворе. Это может быть сильное замедление скорости работы вплоть до невозможности получения нужной прочности. Методы прогрева бетона в зимний период направлены на преодоление этих трудностей.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий