Коэффициенты морозостойкости, теплоемкости и теплопроводности кирпича

Что представляет собой силикатный кирпич

Для начала, давайте разберемся, что собой представляет данный материал.

Силикатный кирпич: состав и основные свойства

Силикатные кирпичи – изделия, изготовленные из смеси песка, извести и воды. Также при производстве используются шлак, зола и иные взаимозаменяемые компоненты.

Состав сырья непосредственно влияет на итоговые характеристики изделий, приуменьшая либо наоборот, преувеличивая их.

Ориентировочный состав силикатного кирпича

Основные требования к изделиям изложены в следующей технической документации:

  • ГОСТ 379-95 Кирпичи и камни силикатные
  • ГОСТ 23421-79 Устройство для пакетной перевозки силикатного кирпича
  • СНиП 3.03.01-87 Несущие и ограждающие конструкции

Рассмотрим таблицу, отражающую основной набор свойств и качеств изделий. Таблица 1. Характеристики силикатного кирпича:

Наименование свойстваЗначение и комментарии
МорозостойкостьВ соответствии с ГОСТ, морозостойкость лицевых изделий должна быть не менее 25.

Производители утверждают, что силикатный кирпич способен выдержать до 100 циклов замораживания и оттаивания.

Прочность и плотностьКирпич обладает достаточно высокими показателями, которые позволяют использовать его при возведении зданий различной этажности.

Числовое значение марки прочности варьируется в пределах от 75 до 300.

В зависимости от средней плотности, выделяют кирпичи: плотные, характеризующиеся показателем более 1500 кг/м3 и пористые, обладающие показателем до 1500 кг/м3.

ВодопоглощениеПоказатель составляет от 6 до 16%. В сравнении с другими материалами, предназначенными для возведения стен, достаточно неплохой результат.
Паропроницаемость0,11. Данная способность отвечает за установление благоприятного микроклимата внутри помещения.
ОгнестойкостьКирпич не горит, и не вступает во взаимодействие с огнем.
ЭкологичностьИзделия не содержат в своем составе вредных или ядовитых веществ. Они абсолютно безопасны для окружающей среды и человека.
Ценовая категорияСредняя. Зависит от типа и вида кирпича, региона.

Виды материала и область применения

Силикатный кирпич имеет несколько классификаций, основанных на тех или иных свойствах и факторах. Рассмотрим их более подробно.

В соответствии с составом компонентов, материал бывает:

  • Известково-зольный, содержащий в себе золу в количестве 75-80% и известь, в количестве – 20-25%.
  • Известково-шлаковый. Характеризуется наличием в составе легкого шлака вместо песка, совмещенного с известью.
  • Известково-песчаный. Наиболее популярный на производстве вариант. Такие изделия содержат песок и известь. Причем первый, в количестве — до 93%.

В соответствии с ГОСТ, стандартным размером кирпича является- 250*120*65, именуют такие изделия — одинарными.

Одинарный кирпич

Также возможен выпуск утолщенного варианта, толщиной в 88 мм. В конструкционном отношении, силикатный кирпич может быть полнотелым и пустотелым. Полнотелые изделия – более тяжелые по массе, более прочные и обладающие большим коэффициентом теплопроводности.

Полнотелый кирпич

  • 14-пустотные изделия. Диаметр пустот – 30-32 м, пустотность -28-30%;
  • 11-пустотные изделия. Диаметр пустот -27-32 мм, пустотность – 20-25%;
  • 3-пустотные изделия. Диаметр пустот – 52 мм, пустотность-15%.

Наличие пустот влияет на коэффициент теплопроводности, а также на расход раствора при возведении стены.

В соответствии с назначением, силикатный кирпич может быть:

  • Рядовой;
  • Лицевой.

Первый вид используется при возведении стен и перегородок. Нуждается в последующей отделке. Технической документацией допускается шероховатость поверхности, наличие небольшого процента сколов и отбитостей.

Облицовочный, или лицевой кирпич, отличается особо строгими требованиями к внешнему виду. Поверхность его – гладкая, декоративная, может иметь фактуру. Такой кирпич должен обладать двумя декоративными сторонами — тычковой и ложковой, однако наличие одной – допускается по договоренности с потребителем.

Кирпич силикатный облицовочный фактурный

В зависимости от цвета, кирпич выделяют:

  • Окрашенный;
  • Неокрашенный.

Неокрашенные изделия имеют белый либо слегка сероватый оттенок. Окрашенный – колеруются после затвердения, либо на стадии замеса раствора, путем добавления красителей.

В целом, у силикатного кирпича достаточно широкая сфера применения. Его используют при:

  • Мало- и многоэтажном строительстве, возведении производственных и жилых зданий, садовых домиков;
  • Устройстве вентканалов;
  • Возведении перегородок, заборов и многое другое.

Исключается возможность использования материала при строительстве цоколя, более приемлемым вариантом считаются керамические изделия.

Плотность и удельная теплоемкость кирпича

Кирпич — ходовой стройматериал в строительстве зданий и сооружений. Многие различают только красный и белый кирпич, но его виды намного разнообразнее. Они различаются как внешне (форма, цвет, размеры), так и такими свойствами, как плотность и теплоемкость. Традиционно различают керамический и силикатный кирпич, которые имеют различную технологию изготовления

Важно знать, что плотность кирпича, его удельная теплоемкость и теплопроводность кирпича у каждого вида может существенно отличаться. Керамический кирпич изготавливается из глины с различными добавками и подвергается обжигу

Удельная теплоемкость керамического кирпича равна 700…900 Дж/(кг·град). Средняя плотность керамического кирпича имеет значение 1400 кг/м 3 . Преимуществами этого вида являются: гладкая поверхность, морозо- и водоустойчивость, а также стойкость к высоким температурам. Плотность керамического кирпича определяется его пористостью и может находится в пределах от 700 до 2100 кг/м 3 . Чем выше пористость, тем меньше плотность кирпича.

Силикатный кирпич имеет следующие разновидности: полнотелый, пустотелый и поризованный, он имеет несколько типоразмеров: одинарный, полуторный и двойной. Средняя плотность силикатного кирпича составляет 1600 кг/м 3 . Плюсы силикатного кирпича в отличной звуконепроницаемости. Даже если прокладывать тонкий слой из такого материала, звукоизоляционные свойства останутся на должном уровне. Удельная теплоемкость силикатного кирпича находится в пределах от 750 до 850 Дж/(кг·град).

Значения плотности кирпича различных видов и его удельной (массовой) теплоемкости при различных температурах представлены в таблице:

Таблица плотности и удельной теплоемкости кирпича

Вид кирпичаТемпература, °СПлотность, кг/м 3Теплоемкость, Дж/(кг·град)
Трепельный-20…20700…1300712
Силикатный-20…201000…2200754…837
Саманный-20…20753
Красный0…1001600…2070840…879
Желтый-20…201817728
Строительный20800…1500800
Облицовочный201800880
Динасовый1001500…1900842
Динасовый10001500…19001100
Динасовый15001500…19001243
Карборундовый201000…1300700
Карборундовый1001000…1300841
Карборундовый10001000…1300779
Магнезитовый1002700930
Магнезитовый100027001160
Магнезитовый150027001239
Хромитовый1003050712
Хромитовый10003050921
Шамотный1001850833
Шамотный100018501084
Шамотный150018501251

Необходимо отметить еще один популярный вид кирпича – облицовочный кирпич. Он не боится ни влаги, ни холодов. Удельная теплоемкость облицовочного кирпича составляет 880 Дж/(кг·град). Облицовочный кирпич имеет оттенки от ярко-желтого до огненно-красного. Таким материалом можно производить и отделочные и облицовочные работы. Плотность кирпича этого вида имеет величину 1800 кг/м 3 .

Стоит отметить отдельный класс кирпичей — огнеупорный кирпич. К этому классу относятся динасовый, карборундовый, магнезитовый и шамотный кирпич. Огнеупорный кирпич достаточно тяжел — плотность кирпича этого класса может достигать значения 2700 кг/м 3 .

Наименьшей теплоемкостью при высоких температурах обладает карборундовый кирпич — она составляет величину 779 Дж/(кг·град) при температуре 1000°С. Кладка из такого кирпича прогревается намного быстрее, чем из шамотного, но хуже держит тепло.

Огнеупорный кирпич применяется, при строительстве печей, с рабочей температурой до 1500°С. Удельная теплоемкость огнеупорного кирпича существенно зависит от температуры. Например, удельная теплоемкость шамотного кирпича имеет величину 833 Дж/(кг·град) при 100°С и 1251 Дж/(кг·град) при 1500°С.

  1. Франчук А. У. Таблицы теплотехнических показателей строительных материалов, М.: НИИ строительной физики, 1969 — 142 с.
  2. Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976. — 1008 с. строительной физики, 1969 — 142 с.
  3. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  4. Михеев М. А., Михеева И. М. Основы теплопередачи.

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

МатериалКоэфф. тепл. Вт/(м2*К)
Алебастровые плиты0,470
Алюминий230,0
Асбест (шифер)0,350
Асбест волокнистый0,150
Асбестоцемент1,760
Асбоцементные плиты0,350
Асфальт0,720
Асфальт в полах0,800
Бакелит0,230
Бетон на каменном щебне1,300
Бетон на песке0,700
Бетон пористый1,400
Бетон сплошной1,750
Бетон термоизоляционный0,180
Битум0,470
Бумага0,140
Вата минеральная легкая0,045
Вата минеральная тяжелая0,055
Вата хлопковая0,055
Вермикулитовые листы0,100
Войлок шерстяной0,045
Гипс строительный0,350
Глинозем2,330
Гравий (наполнитель)0,930
Гранит, базальт3,500
Грунт 10% воды1,750
Грунт 20% воды2,100
Грунт песчаный1,160
Грунт сухой0,400
Грунт утрамбованный1,050
Гудрон0,300
Древесина — доски0,150
Древесина — фанера0,150
Древесина твердых пород0,200
Древесно-стружечная плита ДСП0,200
Дюралюминий160,0
Железобетон1,700
Зола древесная0,150
Известняк1,700
Известь-песок раствор0,870
Ипорка (вспененная смола)0,038
Камень1,400
Картон строительный многослойный0,130
Каучук вспененный0,030
Каучук натуральный0,042
Каучук фторированный0,055
Керамзитобетон0,200
Кирпич кремнеземный0,150
Кирпич пустотелый0,440
Кирпич силикатный0,810
Кирпич сплошной0,670
Кирпич шлаковый0,580
Кремнезистые плиты0,070
Латунь110,0
Лед 0°С2,210
Лед -20°С2,440
Липа, береза, клен, дуб (15% влажности)0,150
Медь380,0
Мипора0,085
Опилки — засыпка0,095
Опилки древесные сухие0,065
ПВХ0,190
Пенобетон0,300
Пенопласт ПС-10,037
Пенопласт ПС-40,040
Пенопласт ПХВ-10,050
Пенопласт резопен ФРП0,045
Пенополистирол ПС-Б0,040
Пенополистирол ПС-БС0,040
Пенополиуретановые листы0,035
Пенополиуретановые панели0,025
Пеностекло легкое0,060
Пеностекло тяжелое0,080
Пергамин0,170
Перлит0,050
Перлито-цементные плиты0,080
Песок 0% влажности0,330
Песок 10% влажности0,970
Песок 20% влажности1,330
Песчаник обожженный1,500
Плитка облицовочная1,050
Плитка термоизоляционная ПМТБ-20,036
Полистирол0,082
Поролон0,040
Портландцемент раствор0,470
Пробковая плита0,043
Пробковые листы легкие0,035
Пробковые листы тяжелые0,050
Резина0,150
Рубероид0,170
Сланец2,100
Снег1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности)0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности)0,230
Сталь52,0
Стекло1,150
Стекловата0,050
Стекловолокно0,036
Стеклотекстолит0,300
Стружки — набивка0,120
Тефлон0,250
Толь бумажный0,230
Цементные плиты1,920
Цемент-песок раствор1,200
Чугун56,0
Шлак гранулированный0,150
Шлак котельный0,290
Шлакобетон0,600
Штукатурка сухая0,210
Штукатурка цементная0,900
Эбонит0,160

От чего зависит коэффициент теплопроводности?

Теплопроводность характеризует способность материала пропускать тепло через себя. Чем выше коэффициент теплопроводности, тем быстрее кирпич будет отдавать тепло. Единицей измерения показателя является Вт/(м*К).

В качестве материала для возведения стен стоит использовать кирпич с низким показателем теплоотдачи. Это позволит уменьшить толщину стен и сэкономить на дополнительном утеплении дома. Пустотелые и поризованные кирпичи сохраняют тепло в 2 раза дольше, чем обычные полнотелые блоки.

Если цель — возведение печи или камина, стоит выбирать материалы с высокой теплопроводностью и хорошей жаростойкостью. Оптимальным вариантом является огнеупорная керамика. Теплопроводность клинкерного глиняного кирпича при нагревании может достигать 1,4 Вт/(м*К), благодаря чему печь будет активно отдавать тепло в дом.

Какая теплопроводность изделий

Для анализа теплопроводности изделий из кирпича принимается во внимание закон Фурье. Разница температур оказывает влияние на показатели, которые определяет тепловой поток. Применяемые для отделки фасадов силикатные кирпичи имеют тепловые параметры ниже керамических

Поэтому изделия из силикатных материалов более теплые при одинаковых размерах конструкций

Применяемые для отделки фасадов силикатные кирпичи имеют тепловые параметры ниже керамических. Поэтому изделия из силикатных материалов более теплые при одинаковых размерах конструкций.

Изделия из красного пустотелого керамического кирпича имеют коэффициент теплопроводности 0,56.

На показатели готовых зданий сооружений и влияет качество кладки

Важно, чтобы применяемые кладочные растворы были нежирными. Плотность слоя должна быть не больше 1800кг/м3 и минимальной толщины. Теплотехнические расчеты и требуемая несущая способность определяют то, какая толщина несущей стены будет в здании

Чтобы удовлетворять современным требованиям при реконструкции домов, построенных в советское время, толщину их стен нужно сделать около 1 м. Это не может быть рентабельным, поэтому используют различные системы утепления

Теплотехнические расчеты и требуемая несущая способность определяют то, какая толщина несущей стены будет в здании. Чтобы удовлетворять современным требованиям при реконструкции домов, построенных в советское время, толщину их стен нужно сделать около 1 м. Это не может быть рентабельным, поэтому используют различные системы утепления.

Если утепляющая часть стены и сочетается с каменной, конструкция получается слоистой, то такую укладку называют эффективной. Ее часто применяют в малоэтажном строительстве, для увеличения полезной площади помещений и снижения затрат на материалы.

Морозостойкость

Морозостойкость определяется путем циклов заморозки и размораживания. Данный параметр важен при выборе вида кирпича для укладывания несущих стен. Марка зависит от количества циклов и указывается на изделиях. Наиболее высокой морозостойкостью обладает облицовочный и красный кирпич, который хорошо выдерживает температуру до -50 градусов Цельсия и ниже. Если у вас используется силикатный кирпич, его свойства хуже, поэтому кладку придется делать в два слоя. Не подойдет силикат и для строительства фундамента.

В условиях зимней непогоды тепло в доме сохраняется за счет обогревательного котла отопительной системы. Но для того чтобы не происходило рассеивания тепла, нужны стены, пол и потолок из соответствующего материала, хорошо сохраняющего заданную температуру. Тип кирпичной кладки играет в ходе строительства немаловажную роль. Выбирать материал следует, учитывая все параметры и погодные условия.

В следующем видео вас ждет обзор теплопроводности кирпича ШБ 8.

Теплоаккумулирующая способность материалов

Способность материала удерживать тепло оценивается его удельной теплоемкостью, т.е. количеством тепла (в кДж), необходимым для повышения температуры одного килограмма материала на один градус. Например, вода имеет удельную теплоемкость, равную 4,19 кДж/(кг*K). Это значит, например, что для повышения температуры 1 кг воды на 1°K требуется 4,19 кДж.

Таблица 1. Сравнение некоторых теплоаккумулирующих материалов

Ма­те­ри­алПлот­ность, кг/м 3Теп­ло­ем­кость, кДж/(кг*K)Ко­эф­фи­ци­ент те­пло­про­вод­нос­ти, Вт/(м*K)Мас­са ТАМ для те­пло­ак­ку­му­ли­ро­ва­ния 1 ГДж те­пло­ты при Δ= 20 K, кгОт­но­си­тель­ная мас­са ТАМ по от­но­ше­нию к мас­се во­ды, кг/кгОбъем ТАМ для те­пло­ак­ку­му­ли­ро­ва­ния 1 ГДж те­пло­ты при Δ= 20 K, м 3От­но­си­тель­ный объем ТАМ по от­но­ше­нию к объему во­ды, м 3 /м 3
Гранит, галька16000,840,4559500549,6*4,2
Вода10004,20,611900111,91
Глауберова соль (декагидрат сульфата натрия)*14600 т 1300 ж1,92 т 3,26 ж1,85 т 1,714 ж33000,282,260,19
Парафин*786 т2,89 т0,498 т37500,324,770,4

Для водонагревательных установок и жидкостных систем отопления лучше всего в качестве теплоаккумулирующего материала применять воду, а для воздушных гелиосистем — гальку, гравий и т.п. Следует иметь в виду, что галечный теплоаккумулятор при одинаковой энергоемкости по сравнению с водяным теплоаккумулятором имеет в 3 раза больший объем и занимает в 1,6 раза большую площадь. Например, водяной теплоаккумулятор диаметром 1,5 м и высотой 1,4 м имеет объем 4,3 м 3 , в то время как галечный теплоаккумулятор в форме куба со стороной 2,4 м имеет объем 13,8 м 3 .

Плотность аккумулирования теплоты в значительной степени зависит от метода аккумулирования и рода теплоаккумулирующего материала. Она может быть аккумулирована в химически связанном виде в топливе. При этом плотность аккумулирования соответствует теплоте сгорания, кВт*ч/кг:

  • нефть — 11,3;
  • уголь (условное топливо) — 8,1;
  • водород — 33,6;
  • древесина — 4,2.

При термохимическом аккумулировании теплоты в цеолите (процессы адсорбции — десорбции) может аккумулироваться 286 Вт*ч/кг теплоты при разности температур 55°C. Плотность аккумулирования теплоты в твердых материалах (скальная порода, галька, гранит, бетон, кирпич) при разности температур 60°C составляет 14 17 Вт*ч/кг, а в воде — 70 Вт*ч/кг. При фазовых переходах вещества (плавление — затвердевание) плотность аккумулирования значительно выше, Вт*ч/кг:

  • лед (таяние) — 93;
  • парафин — 47;
  • гидраты солей неорганических кислот — 40 130.

Таблица 2. Сравнение удельной теплоемкости и плотности различных материалов на основе равных объемов

МатериалУдельная теплоемкость, кДж/(кг*K)Плотность, кг/м 3Теплоемкость, кДж/(м 3 *K)
Вода4,1910004187
Металлоконструкции0,4678333437
Бетон1,1322422375
Кирпич0,8422421750
Магнетит, железная руда0,6851253312
Базальт, каменная порода0,8228802250
Мрамор0,8628802375

К сожалению, лучший из приведенных в таблице 2 строительных материалов — бетон, удельная теплоемкость которого составляет 1,1 кДж/(кг*K), удерживает лишь ¼ того количества тепла, которое хранит вода того же веса. Однако плотность бетона (кг/м 3 ) значительно превышает плотность воды. Во втором столбце таблицы 2 приведены плотности этих материалов. Умножив удельную теплоемкость на плотность материала, получим теплоемкость на кубический метр. Эти величины приведены в третьем столбце таблицы 2. Следует отметить, что вода, несмотря на то, что обладает наименьшей плотностью из всех приведенных материалов, имеет теплоемкость на 1 м 3 выше (2328,8 кДж/м 3 ), чем остальные материалы таблицы, в силу ее значительно большей удельной теплоемкости. Низкая удельная теплоемкость бетона в значительной степени компенсируется его большой массой, благодаря которой он удерживает значительное количество тепла (1415,9 кДж/м 3 ).

Перечень материалов, пригодных для утепления стен из силикатного кирпича

Как уже говорилось, понизить коэффициент теплопроводности силикатного кирпича и будущей стены можно при помощи технически верно выполненного утепления поверхности.

Рассмотрим, какие материалы можно использовать, и как происходит процесс работ. Утепление стены из силикатного кирпича можно производить при помощи нескольких материалов.

Воспользуемся таблицей. Таблица 4. Стены из силикатного кирпича: утепление при помощи различных материалов.

Наименование материалаКомментарии, преимущества и недостатки
Минеральная (базальтовая) ватаДостаточно популярный материал, обладает низким коэффициентом теплопроводности.

Из плюсов можно выделить:

  • Малый вес;
  • Простота в монтаже;
  • Невысокая цена;
  • Возможность фиксации своими руками;
  • Экологичность;
  • Биологическая устойчивость;
  • Паропроницаемость;
  • Высокие эксплуатационные характеристики.

Основные минусы сводятся к следующему:

  • Водопоглощение;
  • Возгораемость;
  • Отсутствие устойчивости к деформационным процессам.
Пенопласт (пенополистирол)Достоинства:

  • Невысокая стоимость;
  • Быстрый монтаж;
  • Легкий вес;
  • Устойчивость к влаге;

Недостатки:

  • Материал не дышит;
  • Изделия подвержены горению, при этом выделяются вредные вещества;
КерамзитДостоинств у керамзита много: это и цена, и экологичность, и высокие шумо- и теплоизоляционные показатели.

Его используют для утепления стен, возводимых по технологии колодцевой кладки.

ПенополиуретанТакой метод утепления считается достаточно дорогостоящим. Напыление требует наличия специализированного оборудования и без помощи профессионалов, обычно, не обойтись.

Теплоизоляционные характеристики – высокие.

Теплая штукатуркаЭто-один из самых лучших вариантов. Такие специализированные составы стоят дорого, однако результат может превзойти все ожидания.

Сложность также заключается в нанесении, так как смесь очень быстро схватывается.

Материал не подвержен горению и устойчив к влаге.

Видео в этой статье расскажет подробнее о материалах, пригодных для утепления стен из силикатного кирпича.

https://youtube.com/watch?v=q5kEvedYe4A

Теплофизические свойства бетонов

Образцы с разной теплофизикой Основные свойства бетона, связанные с воздействием на него тепловой энергии, это теплоемкость, теплопроводность и весьма важный в сфере строительства коэффициент линейного расширения. Без учета данных характеристик бетона невозможно добиться создания прочной конструкции здания, не склонной к разрушению под воздействием температурных колебаний.

Теплопроводность.

Теплопроводность бетона играет существенное значение при определении его строительно-физических качеств. Уровень теплопроводности зависит от структуры составляющих бетона и его строения в целом. Да значение данной характеристики оказывает влияние несколько факторов, среди которых наибольшее значение имеют влажность бетона и его температура. Чем большее количество влаги будет содержаться в бетоне и чем до большей температуры он будет нагрет, тем большей теплопроводностью он будет обладать

При проведении практических расчетов во внимание также принимается значение интегральной пористости. Смысл этого показателя состоит в определении объемного веса бетона при температуре +25С в высушенном до неизменяемого веса состоянии (рис

1).

Таблица теплопроводности

Кроме того, в строительной практике также может быть использована для расчета теплопроводности формула Б. Н. Кауфмана:

где под корнем стоит фиксированный коэффициент при указанных выше условиях: +25С и полная просушка. Измеряется это значение в ккал/м-ч-град, для высушенного бетона объемный вес выражается в т/м3.

Между тем, приведенная формула не может быть признана единственно верным способом расчета теплопроводности бетона, т.к. в ней не учитываются показатели пористости бетона, т.е. данные о распределении пор по типоразмеру, о степени сообщаемости или замкнутости. Поэтому с помощью данной формулы наиболее близкие к фактической действительности данные можно получить лишь в том случае, когда на стройке используются бетоны одинакового строения и созданные на заполнителях идентичного строения. Приводить здесь и использовать на практике универсальную и наиболее точную формулу для вычисления фактического уровня теплопроводности бетона не имеет смысла, поскольку она учитывает абсолютно все характеристики бетона. Получить подобные данные в условиях индивидуального жилищного строительства весьма проблематично, да и бессмысленно, т.к. при малых масштабах стройки и небольших конструкционных нагрузках небольшая ошибка в значении теплопроводности бетона особой роли не играет.

Коэффициент температурного расширения и теплоемкость бетона.

Под коэффициентом температурного расширения бетона в строительной практике принято понимать величину отклонения физических размеров бетона при изменении его температуры. Если упростить определение, то коэффициент расширения помогает определить, насколько увеличатся длина и ширина бетонного блока, если температура воздуха повысится на сколько-то градусов. Непринятие в расчет этого показателя моет привести к разрушениям возведенных из бетона конструкций при сезонных колебаниях температур.

Тепловое расширение способно привести к растрескиванию

Показатели коэффициентов температурного расширения бетона и стали приблизительно одинаковы, что широко используется при создании железобетонных конструкций высокой прочности.

От показателя теплоемкости бетона зависит скорость прогрева бетона до нужной температуры, а значит, и до нужных физических характеристик. Без учета теплоемкости зачастую попросту невозможно рассчитать время подачи жидкого бетона на объект строительства, особенно в холодное время года. Обычное значение этого показателя для большинства распространенных марок бетона колеблется в пределах от 0,28 до 0,33 ккал/кг .

Полнотелые и пустотелые

И рядовой, и облицовочный типы кирпича могут изготавливаться как в виде цельных керамических брусков без пустот, так и с пустотами(щелями) внутри. Монолитные изделия принято называть полнотелыми, а те, где есть пустоты – пустотелыми, или щелевыми.

Первые применяются там, где нужна особая прочность (при закладке фундамента, строительстве несущих стен).Вторые за счет пустот внутри лучше сохраняют тепло, поэтому из них разумно класть наружные стены. Также щелевой лицевой кирпич может применяться для облицовки фасадов.

Фигурные (второе название – фасонные) керамические кирпичи могут иметь закругленные или скошенные края, криволинейные грани. Декоративно оформлены, часто изготавливаются под заказ.

Используются для выполнения орнаментов, украшения фасадов, оформления арок и оконных проемов, изготовления элементов декора.

Следующее видео расскажет о том, как выбрать кирпич для строительства:

Изделия из керамики – одни из самых древних. Ведь для их производстваиспользуется легкодоступный материал – глина.

Красный кирпич, также относящийся к керамическим материалам, не теряет своей популярности многие века. Благодаря своей низкой стоимости и целой россыпи полезных качеств и свойств. Об этом мы и поговорим далее, затронув технические характеристики, размеры и свойства обыкновенного красного керамического кирпича.

Каждый кирпич представляет собой параллелепипед, длинная сторона которого равна 25 сантиметрам. Толщина одинарного кирпичаравна 6,5 сантиметра, утолщенного (или полуторного) – 8,8 сантиметра, двойного – 13,8 сантиметра.

Стандартная ширина изделий составляет 12 сантиметров, согласно ГОСТ 530-2012.Европейский стандарт ЕН 771-1:2003 предусматривает для кирпичей «Евро» длину 28,8 сантиметра и ширину 13,8 сантиметра при обычной толщине 6,5 сантиметра. Американские кирпичи более тонкие: 7,8 сантиметра. Все остальные размеры у них соответствуют российским.

Что касается удельного и объемного веса красного керамического кирпича, то он отличается у цельных (полнотелых) и пустотелых изделий. Общие требования, согласно стандартам, гласят, что одна штука кирпича не должна быть тяжелее 4,3 килограмма. В среднем изделия с пустотами весят 2,5 килограмма, а полнотелые представители красного керамического кирпича (1 штука) – от 3,4 до 3,8 килограмма.

Средняя плотность обыкновенного полнотелого, пустотелого и иных видов керамического красного кирпича рассмотрена далее.

О габаритах красного кирпича расскажет в подробностях данное видео:

Эта характеристика (измеряемая в килограммах на метр кубический) дает возможность узнать, сколько весит один кубометр материала. Чем более пористый кирпич, тем меньше этот показатель. И тем ниже теплопроводность конструкций, построенных из кирпича.Так что все эти параметры взаимосвязаны.

К слову, для получения пор в глиняную массу добавляется так называемая «шихта».

Это мелко порубленная солома, опилки, крошки угля или торфа. При нагревании в тысячеградусной печи глина спекается, а эти добавки выгорают, создавая пустоты. В полнотелом кирпиче пустот не должно быть более тринадцати процентов.

Для удобства по плотности все керамические кирпичи разделили на семь классов, обозначаемых цифрами от 0,7 до 2,4. В соответствии с классом изделия обладают определенной теплоэффективностью (подробнее – в разделе «Энергоэффективность»).

Если приводить конкретные цифровые значения, то для цельного керамического кирпича плотность варьируется от 1600 до 1900 килограммов на метр кубический.У пустотелого красного керамического кирпича этот показатель плотности лежит в пределах от 100 — до 1450 кг на м3.

А теперь будет рассмотрен коэффициент теплопроводности керамического красного кирпича.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий