Какова теплопроводность газобетонных блоков

Улучшение тепловых характеристик

Чтобы повысить энергосберегающую способность дома, построенного из газобетона, можно выбрать более широкую толщину стен. Обычно для жилого помещения толщину внешних конструкций 30-40 см оптимальна для средней полосы. Для очень холодных регионов возводят каркас сооружений в два или более слоя, а для хозяйственных построек можно выложить блоки шириной 20 см.

Для утепления жилого помещения из данного материала специалисты рекомендуют применять дополнительную наружную отделку. Если внешние стены оставить незащищенными, то из-за высокой паропроницаемости газобетона со временем теплопроводность таких газобетонных блоков повысится из-за влажности, а изоляционные свойства соответственно снизятся.

Для утепления можно применять пенопласт или пенополистирол, в том числе экструдированный, минвату и эковату, а также теплую штукатурку. А в качестве отделочных материалов используют виниловый или фиброцементный сайдинг, декоративную плитку, штукатурку.

Почему так важно правильно рассчитать?

В современном мире теплоизоляция необходима не только для большего комфорта, но и для экономии. Стоимость отопления неустанно растет, что бьет по карману все сильнее и сильнее, и задача утеплителя также состоит в экономии за счёт удержания тепла.

Зимой тепло гораздо дольше удерживается внутри помещения, а летом наоборот – задерживает лишнее тепло с улицы.

Многим кажется, что чем больше толщина плиты теплоизоляционного материала – тем больше экономии. Но это далеко не так: летом будет прохладнее, а зимой – гораздо жарче, но вот конструкция стены может подвергнуться деформации и разрушению. Меньшая же толщина может привести к дополнительному увеличению потребляемой энергии.

Утепление конструкции дома (потолок, стены, пол) – необходимая часть при ремонте или строительстве (как в жилом доме, так и в зданиях, предназначенных для работы людей). Подбор качественных материалов для теплоизоляции – важный момент в этом деле, но гораздо важнее – грамотный подбор толщины материала. От этого зависят такие факторы, как: долговечность сооружения и технические характеристики при непосредственной эксплуатации здания.

Если проводить сравнение теплопроводности разного сырья, то можно увидеть что минераловатная плита проводит его лучше, чем конструкция из керамзитобетонных блоков.

Испытания теплопроводности блоков YTONG

Недавно ведущая российская экспертная организация, лаборатория строительной теплофизики НИИСФ РААСН, провела испытания газобетонных блоков YTONG**. В лаборатории исследовали теплопроводность блоков в соответствии с методикой, прописанной в ГОСТ 7076-99***. При этом использовали самое современное оборудование – прибор для измерения теплопроводности Lambda-Meter EP500e (Германия), с погрешностью в измерениях – менее 1% (минимальная величина среди аналогичных приборов во всём мире).

В испытаниях принимали участие блоки YTONG всех выпускаемых марок по плотности – D300, D400, D500, D600, в виде квадратных пластин размерами 0,25 х 0,25 м. Толщина пластин варьировалась от 30 до 50 мм, чтобы определить зависимость теплопроводности от толщины материала. Дополнительно испытывали пластины размером 0,15 х 0,15 м, чтобы установить влияние площади образца на его теплопроводность. Исследования проводили при средней температуре в образце 10 и 25℃. В рамках испытаний также определяли теплопроводность целых блоков марки D400, чтобы сравнить их показатели с показателями, полученными при тестировании пластин.

 Испытания, проведённые лабораторией строительной физики НИИСФ РААСН, позволили сделать следующие выводы:

  • Теплопроводность газоблоков YTONG всех марок по плотности полностью соответствует нормативным требованиям к газобетону, которые содержатся в российских нормативных документах****.
  • Теплопроводность образцов газобетона YTONG не меняется в зависимости от их площади.
  • Показатели теплопроводности плоских квадратных пластин и целых блоков YTONG одни и те же.

Главный итог испытаний: теплотехнические расчёты конструкций из газоблоков, выполненные на основе действующих нормативов, актуальны для конструкций из материалов YTONG, без каких-либо оговорок и ограничений. Теоретические выкладки полностью совпадают с фактическими свойствами газобетона. И если расчёт конкретного дома показывает, что его можно строить с однослойными стенами, то лучше всего выбрать именно такой вариант.

Показатели теплопроводности газосиликатных блоков

В зависимости от пропорций исходных ингредиентов можно получить продукт с различными эксплуатационными характеристиками. Коэффициент теплопроводности газосиликатного блока (?) зависит от его плотности и определяется по маркировке: D300, D400, D500, D600, D700.

Каждая марка имеет оптимальные показатели в зависимости от назначения:

  1. Теплоизоляционный (D300, D400) — имеет минимальную прочность при максимальной пористости. Обладает самым низким показателем теплопроводности, используется только для теплоизоляции готовых стен.
  2. Конструкционно-теплоизоляционный (D500, D600) — имеет средние показатели плотности и прочности. Предназначен для межкомнатных перегородок и стеновых конструкций до 2-х этажей.
  3. Конструкционный (D700 и выше) — применяется для возведения несущих стен малоэтажных построек.

При выборе строительных блоков необходимо учесть эксплуатационную влажность, назначение, технологию изготовления материала.

Таблица теплопроводности газосиликатных блоков

Характеристики влажностиD300D400D500D600D700
Теплопроводность ? (Вт/(м?°C)) в сухом виде0,0720,0940,120,140,165
Теплопроводность ? (Вт/(м?°C)) влажность 4%0,0880,1170,1410,160,192

Теплопроводность газосиликата зависит от ряда факторов:

  1. Габариты строительного блока. Чем большую толщину имеет стеновой блок, тем выше его теплоизолирующие свойства.
  2. Влажность окружающей среды. Материал, впитавший влагу, снижает способность хранить тепло.
  3. Структура и количество пор. Блоки, имеющие в своей структуре большое количество крупных воздушных ячеек, имеют повышенные теплоизоляционные показатели.
  4. Плотность бетонных перегородок. Стройматериалы повышенной плотности хуже сохраняют тепло.

Пошаговая инструкция по теплоизоляции стен минватой

Минеральная вата — это материал с ячеистой структурой, который обладает высокими теплоизоляционными характеристиками. Минвата, которая производится в рулонах, со временем имеет свойство проседать, а более долговечной считается продукция, выпущенная в виде матов.

Маты способны сохранять свои размеры и теплосберегающие свойства на протяжении всего периода эксплуатации. По этой причине фасады и стены строений чаще всего утепляют именно этим теплоизоляционным материалом.

Последовательность выполнения работ:

  1. Если во время кладки стен из газосиликатных блоков на них попадала влага, то перед тем, как приступать к работе по теплоизоляции, им нужно дать время (как минимум 1-3 месяца) хорошо высохнуть. Если «запереть» попавшую в толщу материала влагу, то это будет способствовать промерзанию стен и разрушению блоков.
  2. Далее нужно внимательно осмотреть все наружние швы. Швы от раствора нужно загерметизировать повторно. Для этой цели лучше всего подойдет полиуретановая пена.
  3. Полиуретановой монтажной пеной нужно так же заполнить все имеющиеся на поверхности ячеистого бетона трещины и пустоты.
  4. Для сохранения хороших адгезионных свойств клеевого состава, поверхность блоков нужно зачистить наждачной бумагой.

Утепление под облицовочный кирпич

Крепление при помощи дюбелей

Не забудьте перед началом работ проверить наличие каналов для коммуникаций.

ВАЖНО!

Методика утепления стен из газобетона минеральной ватой может быть проведена посредством специальных клеевых составов, а также можно использовать способ сухой теплоизоляции.

Мы подробным образом рассмотрим второй метод:

  1. На стену нужно закрепить кронштейны, на которые впоследствии будут устанавливаться направляющие.
  2. Далее при помощи пластиковых дюбелей необходимо монтировать минераловатные плиты. Плиты должны устанавливаться враспор, следует избегать возникновения щелей и пустот между листами материала, так как может привести к возникновению «мостиков холода».
  3. Сверху на теплоизоляционный слой нужно уложить ветрозащитную паропроницаемую пленку. Пленка укладывается внахлест с шагом 10-15 см, швы проклевываются монтажной лентой.
  4. Для обеспечения вентиляции нужно обеспечить воздушный зазор между теплоизоляционным материалом и облицовкой посредством установки контробрешетки.
  5. Заключительный этап – обшивка стен сайдингом.

Теплоизоляция пеноплексом

Коэффициент теплопроводности газобетона по марке

На производственных линиях компании АлтайСтройМаш выпускаются газоблоки любых марок: D400, D500, D600 и т.д. Каждая марка газобетонных блоков служит определенной цели в работах по возведению зданий:

  • D400 применяется для строительства временных малогабаритных построек жилого типа. Сырье требует дополнительной отделки или облицовки. Цифра «400» говорит о том, что в 1 куб.м. газобетона содержится 400 кг твердого материала; остальное пространство занимают пузырьки воздуха.
  • D500 подходит для построек бытового и сельскохозяйственного назначения. Блоки немного прочнее, чем марка D400, однако еще не способны выдерживать нагрузку тяжелой кровли.
  • Блоки D600 и выше применяются при малоэтажном строительстве, обычно при возведении частных одноуровневых домов.

Пористая структура газобетонных блоков препятствует выдуванию тепла из внутренней части здания. Это позволяет экономить на теплоизоляционных материалах при дальнейших отделочных работах.

Что такое газосиликатобетон

Газосиликат относится к группе ячеистых (вспененных) бетонов (СН 277-80) и представляет собой стеновые блоки, предназначенные для возведения ограждающих конструкций (кроме фундаментов).

Производятся из смеси:

  • вяжущего (портландцемента по ГОСТ 10178-76, извести-кипелки кальциевой (по ГОСТ 9179-77);
  • силикатного или кремнеземистого наполнителя (кварцевого песка, золы-уноса и т.п.);
  • воды технической;
  • газообразующей добавки (алюминиевой пудры и других).

Такой состав обеспечивает активную химическую реакцию, в результате которой образуется большое количество водорода. Он вспенивает бетонную массу и после отверждения получается высокопористый материал с высокими теплоизоляционными свойствами.

Стеновые газоблоки выпускаются двумя способами:

  1. обычным, то есть состав застывает в форме в естественных условиях, сушится в течение 2-4 недель. Готовое изделие получается недорогим, но не слишком прочным. Коэффициент усадки в 2-4 раза выше, чем у заводского;
  2. автоклавным (ГОСТ 31360-2007). Блоки подвергаются тепловлажностной обработке (пропариванию) в специальных агрегатах – автоклавах. Давление пара поддерживается на уровне 9 бар, температура – до +175 °С.

Например, для производства газосиликатных блоков с повышенным уровнем морозостойкости используется портландцемент с маркировкой от F50 и выше. Ниже смотрите видео-советы по строительству дома из газосиликата:

Теплопроводность газобетонных блоков

Химическая реакция при смешивании извести и алюминиевой пудры в цементном растворе происходит с выделением водорода. В процессе автоклавной сушки получают газобетон с равномерно распределенными открытыми ячейками неодинаковой формы. Пористая структура материала определяет его основные физические характеристики: небольшой вес при крупных размерах, паропроницаемость, изоляционные свойства. Низкая теплопроводность газобетона зависит от его плотности. Чем больше воздушных пор в объеме, тем медленнее предается тепловая энергия и дольше сохраняется комфортная атмосфера внутри помещения.

Теплотехнические свойства газоблоков

Ограждающие конструкции являются источником теплопотерь во время отопительного сезона. Поэтому при строительстве и теплоизоляции частных коттеджей используют пористые материалы. Газобетон в зависимости от плотности, которую измеряют в кг/м3, производят различных марок:

  • D300–D400 применяют в качестве теплоизоляции;
  • D500–D900 используют, как утеплитель и при одноэтажном строительстве;
  • D1000–D1200 применяют в несущих конструкциях высотных зданий.

Марка D600 указывает, что в кубометре пористого бетона содержится 600 кг твердых компонентов, которые занимают примерно треть объема. Воздух в ячейках нагревается намного медленнее и является естественным препятствием для передачи тепла. Значит, чем меньше плотность монолита, тем лучше его изоляционные свойства. Теплопроводность газоблока в сравнении с другими материалами отличается низкими значениями:

НаименованиеКоэффициент теплопроводности, Вт/м °C
Плотность, кг/м3
D300D400D500D600
Газобетон при влажности 0%0,0720,0960,1120,141
5%0,0880,1170,1470,183
Пенобетон при влажности 0%0,0810,1020,1310,151
5%0,1120,1310,1610,211
Дерево поперек волокон при влажности 0%0,0840,1160,1460,151
5%0,1470,1810,1830,218

Пеноблоки имеют сходную структуру с газобетоном, но отличаются замкнутыми ячейками и высокой плотностью. Вспененный бетон застывает в формах и имеет неточную геометрию по сравнению с другими стройматериалами. Поэтому как теплоизоляцию чаще используют газосиликатные блоки.

Дерево считается самым экологичным материалом для строительства комфортного, «дышащего» жилища с наиболее благоприятными условиями микроклимата. Но теплопроводность стен такого дома выше газобетонных. Ячеистые блоки обладают паропроницаемостью, огнеупорностью, биостойкостью и при надежной гидроизоляции с успехом заменяют древесину. Тщательнее всего необходимо оградить фундамент и цоколь, чтобы пористая структура не натягивала влагу из грунта. Для этого использую битум и рубероид.

Теплопроводность кирпича и газоблока

Традиционный строительный материал для возведения частных домов – кирпич отличается прочностью, морозостойкостью и долговечностью. Такие показатели возможны при высокой плотности искусственного камня. По сравнению с газоблоком кирпичные стены делают многослойными. Применение «сэндвич» технологии позволяет прокладывать теплоизоляцию между наружной и внутренней кладкой.

НаименованиеСредняя теплопроводность, Вт/м °C
Блок из газобетона0,08-0,14
Кирпич керамический0,36-0,42
– глиняный красный0,57
– силикатный0,71

Энергосберегающая способность

Теплоизолирующие свойства ограждений зависят от их толщины. Чем массивнее стены, тем медленнее будет охлаждаться внутреннее пространство дома. При проектировании толщины ограждения следует учитывать мостики холода – слой цементного раствора между элементами кладки. Блоки монтируют с помощью пазовых замков и специального клея. Такой способ позволяет сократить до минимума тепловые потери. Чтобы сэкономить средства на закупке стройматериалов, необходимо знать характеристики сборных конструкций стандартной толщины:

НаименованиеТолщина наружной стены
12 см20 см24 см30 см40 см
Теплопроводность, Вт/м °C
Кирпич белый7,514,523,753,122,25
красный6,754,053,372,712,02
Газоблок D6001,160,720,580,460,35
D5001,010,610,520,420,31
D4000,820,510,410,320,25

Благодаря низкой теплопроводности в южных районах частные коттеджи строят из газобетона D400 толщиной 20 см, в средней полосе используют пористые элементы D400 с шириной 30 см или D500 – 40 см. В условиях севера возводят многослойные стены из конструкционных и изоляционных блоков. Благодаря хорошим теплотехническим характеристикам газобетоном утепляют дома из кирпича, железобетона, пеноблоков.

Утепление газобетона: внутри или снаружи?

Выбирая, снаружи или изнутри осуществить утепление стен из газобетона, предпочтение лучше отдавать первому способу.

Во-первых, внутренний объем здания существенно уменьшается из-за толщины изолятора.

Во-вторых, в холодное время стены плохо прогреваются и быстро остывают с внешней части, а скопившийся конденсат в плитах, деревянном перекрытии или кирпиче многократно замерзает и размораживается, что отрицательно сказывается на целостности всей конструкции.

В-третьих, особенность структуры газобетона требует устройства обязательной вентиляции между слоем утеплителя и стены, в противном случае появится плесень и грибок.


Смещение точки росы без утепления, а также при внутреннем и внешнем утеплении При определенных условиях и хороших системах пароизоляции и вентилирования допускается установка внутреннего утеплителя.

Поэтому чаще всего применяется утепление фасада снаружи, к тому же такой подход существенно повышает уровень звукоизоляции стен. Утеплитель и защитная пленка защищают газобетон от разрушительного действия влаги, а финишная отделка позволяет сделать красивый фасад в любом стиле.

Метод измерения

Схема прибора включает в себя два металлических массивных блока. Пластину исследуемого материала и контактирующий с ней тепломер устанавливают между двумя блоками с одинаковой теплопроводностью, при этом верхний нагревают. После выключения нагревателя между блоками устанавливается тепловой поток, близкий к стационарному. Его измеряют при помощи тепломера.

Если тепловая изоляция блоков, боковых поверхности образца и тепломера идеальна, через них проходит одинаковый тепловой поток. В реальных условиях температура блоков изменяется из-за перетока тепла через образец. Кольцевая прослойка между поверхностями блоков и образцом может быть заполнена воздухом или теплоизоляцией, например, пенопластом или поролоном.

Оценка погрешности измерения теплопроводности проводится с учетом теплообмена образца со средой. Поток рассеяния с боковой поверхности образца может быть определен как алгебраическая сумма потоков к верхней, нижней и торцевой поверхностям кольцевой прослойки.

При определенном соотношении размеров образца и блоков поток рассеяния является следствием несимметричности теплообмена боковой поверхности образца с торцевыми частями кольцевой прослойки. Погрешность измерения при этом не зависит от теплового сопротивления исследуемого материала, она определяется только геометрическими размерами используемого калориметра.

Коэффициент теплопроводности марки D600

Дом из газобетонных блоков сохраняет комфортную температуру в помещениях, как в зимний, так и в летнее время.

Данные изделия также являются конструкционно-теплоизоляционными. Средняя величина показателя для продукции составляет около 0,14 Вт/(м °С). Расчетные теплоизоляционные характеристики стен, состоящих из изделий марки D600, могут достигать до 0,31 Вт/(м °С). Для минимизации теплопотерь требуется точное выполнение рекомендаций по гидроизоляции материала от влаги воздуха, атмосферных осадков.

К сожалению, не только газоблоки составляют тело стен. Мостики передачи тепла создаются армопоясами, бетонными перемычками (поясами), кладочными швами. Последние резко понижают теплоизоляционные качества конструкции стен в целом.

Использование при монтаже специальных клеев снижает теплопроводность стен по сравнению с кладкой на цементные растворы. Вместе с тем повышение точности изготовления единиц продукции при одновременном увеличении их стандартных размеров позволяет сократить количество мостиков холода.

Теплопроводность стен из газобетона

Для сравнения приведем показатели теплопроводности традиционного керамического щелевого, так называемого, эффективного кирпича и газобетонных блоков. Теплопроводность условной стены из щелевого кирпича  будет варьироваться от 0,35 до 0,45Вт/(м ‘С).  Будем учитывать минимальный показатель 0,35 Вт/(м ‘С). Теплопроводность условной стены из газобетона марки D400 равна 0,10 Вт/(м ‘С). Теплопроводность условной стены из газобетона марки D500 в среднем равна 0,12 Вт/(м ‘С). Не нужно обладать исключительными математическими способностями, чтобы увидеть – теоретически, дом, построенный из кирпича, будет выпускать тепло, примерно, в 3-4 раз быстрее, чем здание со стенами из газобетона (при той же толщине).

Теплопроводность стен в современном строительстве регламентируется СНиП 23-02-2003. В соответствии с этим нормативным документом, для обеспечения нормальной тепло-эффективности здания, стена из кирпича должна быть толщиной не менее 640 миллиметров. Это показатель для жилых домов, возводимых в средней полосе России, где температура воздуха зимой редко опускается ниже -30 градусов по Цельсию. При использовании газобетонных блоков марки D400 с теплопроводностью 0,10 Вт/(м ‘С) стены из газобетона могут иметь толщину 375 миллиметров и сохранять столько же тепла в помещении. Рекомендуемая толщина стен из газобетонных блоков марки D500 с теплопроводностью 0,12 Вт/(м ‘С) располагается в диапазоне от 400 до 500мм. Стоит отметить, что в отличие от других регионов России, непосредственно в Москве строительство из силикатного кирпича не рекомендовано. Причиной этому, прежде всего, послужила весьма большая теплопроводность данного вида строительного материала. Поэтому реальной альтернативой газобетону в Москве служит пенобетон и керамический кирпич. Пенобетон сильно уступает в качестве автоклавному газобетону, поэтому часто соотношение цены и качества для застройщиков оказывается более приемлемым именно у газобетона. Намного надежнее выглядит керамический поризованный кирпич. Но стоимость такого материала заметно выше, чем у газобетонных блоков. К тому же, хоть поризованный кирпич по сравнению с силикатным (0,55-0,75 Вт/(м ‘С)) и обладает меньшей теплопроводностью – 0,20-0,24 Вт/(м ‘С), в этом параметре он всё же проигрывает газобетону марок D400 и D500 с теплопроводностью 0,10-0,14 Вт/(м ‘С).

Технологии изготовления блоков из газобетона и газосиликата

Чтобы понять, чем отличается газобетон от газосиликата, необходимо учесть разницу в способах изготовления таких материалов.

Для получения ячеистого бетона используются 2 технологии: автоклавная и неавтоклавная.

При неавтоклавном изготовлении пористых блоков затвердевание массы после добавления газообразователя происходит в естественных условиях, без дополнительной обработки. На полное застывание бетона при этом уходит 28 дней.

Автоклавная технология позволяет ускорить этот процесс до 12-15 часов путём выдерживания бетонной массы под давлением 8-14 атм при температуре до 175-190˚С.

Преимуществами автоклавной технологии являются:

  • Возможность придания газоблокам точной геометрической формы и стандартных размеров;
  • Более равномерное распределение пустот, способствующее усилению тепло- и звукоизоляции;
  • Повышение твёрдости блоков, снижение вероятности усадки и растрескивания материала.

Надёжные крепления для газобетонных стенИсточник eyecorrector.ru

Преимуществами неавтоклавных блоков являются меньшая гигроскопичность и цена.

Газобетон изготавливают обоими способами.

Для изготовления газосиликата применяется только автоклавная технология.

Теплопроводность газосиликатных блоков: коэффициент теплопроводности в таблице

Рынок современных строительных материалов регулярно пополняется усовершенствованными новинками. При возведении малоэтажных домов растет спрос на газосиликатные блоки, которые имеют более низкий коэффициент теплопроводности по сравнению с бетоном, деревом или кирпичом. Теплопроводность газосиликатных блоков обусловлена пористой структурой, которая на 80-85% состоит из воздуха. Сырьем для производства газосиликата являются: вода, цемент, кварцевый песок, известь. В качестве добавки используется алюминиевая пудра. При взаимодействии всех компонентов происходит вспенивание массы в результате выделения водорода.

Теплопроводность газобетона — WiKi

Теплопроводность газобетона — это способность теплообмена между материальными телами, которые передают тепло друг другу. Теплопроводность — одна из основных характеристик газобетона. Благодаря малому весу и низкой теплопроводности газобетон применяется в теплоизолирующих конструкциях (несущие и перегородочные стены зданий и сооружений). Теплоизоляционные свойства газобетона в 5 раз выше, чем у керамического кирпича и в 8,6 раз лучше, чем у силикатного.

Коэффициент теплопроводности (обозначаемый через λ) газосиликатных блоков и прочих строительных материалов характеризует средний показатель теплопроводности. После производства газобетона, происходит сертифицированный контроль, где в результате испытаний указываются характеристики теплопроводности, морозостойкости, шумоизоляции и другие, по факту испытаний.

Существует также коэффициент теплопроводности газобетона, который при сертификации продукции принято разделять на 2 подгруппы: λ (α) и λ (β) , где (α) — лямбда теплопроводности газобетона в сухом состоянии, а (β) — бета теплопроводности газобетона, как правило обозначает влажность состава при 4%.

Показатель (λ) принято указывать в начале таблицы характеристик газобетона. который напрямую зависит от плотности газобетона (например, D400, D500, D600), чем выше плотность материала, тем выше будут показатели лямбда(α) и (β). Данные характеристики наиболее важны для крупного строительства (многоэтажный дома) особенно, где расчеты величин, специфических характеристик проектировщиков, должны точно совпадать с проектом планируемого к возведению здания.

Существенным влиянием на теплопроводность газобетона оказывает показатель свободной влаги в газобетоне коэффициент теплопроводности. Производство теплоизоляционного газобетона происходит на ряде общих условий и принципов, которые едины как для штучных изделий газобетона так и для монолитных газобетонов. Для всех газобетонов используемых в фасадной теплоизоляции основным энергетическим параметром считается теплопроводность.

Пример описания характеристики:

«Теплопроводность»

• λ (α) — Вт/ (м °С) — 0.137 в сухом состоянии;

• λ (β) — Вт/ (м °С) — 0.150 при равновесной влажности 4 %

Наличие влаги в газобетоне, а также температура окружающей среды оказывает прямое влияние на его теплопроводность. Следует отметить, что коэффициент теплопроводности напрямую зависит и от объемного веса газобетона(м³). В результате исследований было выявлено, что чем выше объемный вес газобетона, тем выше коэффициент теплопроводности, при этом исследования проводились в разных температурных условиях:

• 0°C – 0,24;

• 10°C – 0,25;

• 30°C – 0,27;

• 40°C – 0,28.

К основным преимуществам газобетона относятся низкая теплопроводность, высокая морозоустойчивость и высокая прочность на сжатие. Определяющими качествами в процессе производства газобетона, считается теплопроводность материала и его плотность, а также их совместная оценка по коэффициенту конструктивного качества.

Технология производства

Разберемся, как делают газоблоки. Компоненты перемешиваются в определенных пропорциях, сырье разливается в специальные формы для газоблоков. Если производственный процесс подразумевает автоклавный вариант, то затвердевание камней происходит под воздействием температурного режима, достигающего двухсот градусов, и давления в 10 – 12 бар. Обработка в автоклаве во время изготовления блока дает возможность порам равномерно распределиться по всему объему камня.

Второй вариант изготовления – застывание сырья в обычных условиях. Качество таких блоков ниже, и стоят они дешевле.

Улучшение тепловых характеристик

Чтобы повысить энергосберегающую способность дома, построенного из газобетона, можно выбрать более широкую толщину стен. Обычно для жилого помещения толщину внешних конструкций 30-40 см оптимальна для средней полосы. Для очень холодных регионов возводят каркас сооружений в два или более слоя, а для хозяйственных построек можно выложить блоки шириной 20 см.

Для утепления жилого помещения из данного материала специалисты рекомендуют применять дополнительную наружную отделку. Если внешние стены оставить незащищенными, то из-за высокой паропроницаемости газобетона со временем теплопроводность таких газобетонных блоков повысится из-за влажности, а изоляционные свойства соответственно снизятся.

Для утепления можно применять пенопласт или пенополистирол, в том числе экструдированный, минвату и эковату, а также теплую штукатурку. А в качестве отделочных материалов используют виниловый или фиброцементный сайдинг, декоративную плитку, штукатурку.

ДОПОЛНИТЕЛЬНЫЕ СВОЙСТВА ГАЗОБЕТОНА

Огнестойкость

Кладка из газобетонных блоков – наиболее огнестойкая из однослойных конструкций. Пористая структура и высокие теплоизоляционные свойства защищают газобетонную кладку от повреждений, свойственных обычному бетону при интенсивном выделении и испарении воды. Поскольку жар огня проникает в конструкцию медленно, кратковременный сильный пожар приводит к возникновению сеточки усадочных трещин на поверхности кладки, не влияющих на несущую способность конструкции. Многочасовой пожар ведет к снижению влажности всей толщи кладки и развитию усадки до максимальных 2 мм/м.
Рост температуры сначала повышает прочность кладки, затем понижает до начальных значений (при нагреве до 700 °С). Дальнейший нагрев довольно быстро снижает прочность (до нуля при 900 °С).

Таблица Пределы огнестойкости кладки из газобетонных блоков на минеральном клею или растворе.

Толщина стены, ммПределы огнестойкости
100EI180
150R120 EI180*
200 и болееREI240

Звукоизоляция

Вопросы звукоизоляции особенно актуальны для стен, разделяющих смежные квартиры (или секции сблокированных одноквартирных домов)

При проектировании таких стен важно предотвращать косвенную передачу звука через объединяющие элементы: несущие конструкции и пропуски инженерных систем. В общем случае межквартирные стены должны иметь поверхностную плотность не менее 400 кг/м2 или не быть однослойными.
Изоляция воздушного шума зависит главным образом от веса стены, а также от наличия упругих соединений по периметру стен.
В таблице внизу приведены индексы изоляции воздушного шума, достижимые при устройстве однослойных газобетонных стен из газобетонных блоков со шпаклевкой поверхности.

Таблица Индекс изоляции воздушного шума в домах из газобетона.

Толщина стены (мм) / Марка блоков Индекс изоляции воздушного шумаRw (дБ)
100/D50039
150/D50044
200/D50046
250/D40045
300/D40046
375/D40047

Трещиностойкость (Армирование и деформационные швы)

Внешние воздействия (перепады температуры и влажности) вызывают объемные деформации в материале – тепловые расширение/сужение, влажностные усадка/набухание. Это
приводит к возникновению внутренних напряжений в конструкциях. Газобетон имеет довольно низкое сопротивление растягивающим напряжениям, поэтому высыхание и понижение температур могут привести к образованию трещин. Причиной возникновения трещин может также стать недостаточная жесткость фундамента. Образующиеся волосяные трещины не влияют на несущую способность кладки, но могут испортить внешний вид отделанной поверхности и привести к локальной воздухопроницаемости стен.При правильном проектировании и строительстве образования трещин можно избежать.
Для этого кладка разделяется на фрагменты деформационными швами или армируется. В качестве дополнительной защиты от трещин может быть использовано армирование отделочных слоев стекловолокнистой сеткой – эта мера предотвратит выход трещин на поверхность.
Расчетные армирование и температурно-усадочные швы должны назначаться в соответствии с требованиями СНиП II-22 «Каменные и армокаменные конструкции».
Конструктивное армирование может быть целесообразным на границах проемов в нагруженных стенах; по длине конструкций, подвергающихся боковым нагрузкам (ветер, давление
грунта для заглубленных стен), в ряде других случаев.
Для самонесущих стен, заполняющих ячейки несущего каркаса, целесообразней вместо армирования использовать более частое расположение деформационных швов.

Крепления

Газобетон пористый материал с невысокой прочностью при растяжении. Поэтому использование его в качестве основы для крепления навесного оборудования имеет свои
особенности.

Крепеж применяемый в домах из газобетонных блоков

Предыдущий материал:Инструменты необходимые для строительства дома из газобетонных блоков. >>>Строительство дома из блоков:Газобетон. Правда и вымысел. >>>Фотоальбом: Строительство домов из газобетона, газобетонных блоков. >>>Строительство домов из газобетона (блоков). (альбом конструктивных узлов). >>>Смета на строительство дома из пенобетона и газобетона. Стоимость строительства дома из пеноблоков. >>>Проекты домов из ячеистого бетона (керамзитобетона, пеноблоков, газобетонных блоков, силиката) >>>

Требования к стенам пристроя

В строительстве толщина стен (наружных и внутренних) выбирается на основании теплотехнического расчета, учитывающего климатическую специфику региона застройки, категорию грунта, ветровую нагрузку и другие важные параметры.

Самостоятельно справиться с такой задачей не всегда удается, поэтому приходится ориентироваться на технические значения класса прочности и энергоэффективности газоблочных изделий:

  • В зависимости от климатических условий для кладки наружных стен отапливаемых построек применяют газобетоны толщиной 300-400 мм марки D500.
  • Для внутренних стен рекомендуется применять блоки толщиной 200-300 мм марки D400.
  • Межкомнатные перегородки устраивают из блоков марки D300, обладающего лучшими звукоизоляционными характеристиками.

Блоки этих марок характеризуются отличными теплоизоляционными свойствами и позволяют аккумулировать внутреннее тепло. Если сравнивать пристройку, построенную из классического кирпича и ячеистого бетона, в последнем варианте экономия энергоресурсов на отопление составляет 40%.

Наружные стены из газобетона имеют ограничения по высоте, связанные с невысокой прочностью материала. По этой причине конструкция стен одноэтажной пристройки высотой 2,5-3 метра предусматривает устройство укрепляющего армирующего пояса, укладываемого по всему верхнему периметру наружных стен.

Зависимость от качества макроструктуры

Данная разновидность блоков отличается от пенобетонных тем, что содержит характерные вытянутые пустоты неправильной формы. Такому образованию их формы материал обязан выходу газа в процессе отвердения. Газ выходит через образовавшиеся в порах трещинки, а значит, есть обратная сторона вопроса — подверженность продукции поглощению влаги.

Структуризацию материала определяют технологии изготовления. Определяющим фактором являются размеры внутренних пустот. Теплосберегающие свойства материала тем выше, чем больше пустотелых сфер в материале, а также чем меньших они размеров.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий